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Cooperative jump motions are studied for mutually interacting particles in a one-dimensional periodic
potential. The diffusion constant for the cooperative motion in systems including a small number of particles
is numerically calculated and it is compared with theoretical estimates. We find that the size distribution of the
cooperative jump motions obeys an exponential law in a large system.
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Glass transitions and jamming transitions have been in-
tensively studied for supercooled liquids and granular mate-
rials �1�. The dynamics becomes very slow near the glass and
jamming transitions. Furthermore, the dynamical heterogene-
ity is observed, in which some regions exhibit faster dynam-
ics than the rest region �2–4�. In the mobile regions, coop-
erative jump motions and stringlike cooperative motions are
often observed in numerical simulations of supercooled liq-
uid �5,6�. Donati et al. found that the probability distribution
of the string length obeys an exponential law �6�. However,
the mechanism of the cooperative jump motions is not com-
pletely understood in the supercooled liquids. We tried to
understand the cooperative jump motion from a viewpoint of
dynamical systems �7�. There is a delocalization transition in
a system of a small number of particles confined in a box
with periodic boundary conditions. It is a kind of chaos-
chaos transitions in chaotic dynamical systems. Near the de-
localization transition, the particles exhibit cooperative jump
motions.

Near the glass transitions of supercooled liquids, the par-
ticles tend to be trapped in cages, which are constructed of
the jammed particles by themselves. In this Brief Report, we
propose a one-dimensional system of N particles under a
periodic potential as shown in Fig. 1�a� as one of the sim-
plest models that exhibit cooperative jump motions. The ex-
ternal periodic potential works as a cage for each particle in
this model. We study a mechanism and statistical properties
of the cooperative jump motions in this simple model.

The model equation has a form of an overdamped Lange-
vin equation

dxi

dt
= − F0 sin�2�xi� + F�xi − xi−1� − F�xi+1 − xi� + �i�t� ,

�1�

where F0 denotes the amplitude of the spatially periodic
force, and the noise �i�t� satisfies ��i�t�� j�t���=2T�i,j��t− t��.
The repulsive interaction between the neighboring particles
is expressed as F�x�=−�U /�x, using the Lennard-Jones po-
tential U�x�=−���6 /x6−�12 /x12� for x�xc=21/6�. The at-
tractive part of the Lennard-Jones potential is neglected for
the sake of simplicity, i.e., F�x�=0 for x�xc=21/6�. N par-
ticles are confined in a system of size N and the periodic
boundary conditions are imposed. That is, xi is reset to xi
−N when xi reaches N, and xi is reset to xi+N when xi

reaches 0. If xc�1, the particles are jammed by the repulsive
interaction. The spatially periodic force is derived from the
external potential U0�x�=−F0 / �2��cos�2�x�. In the state of
the lowest energy, each particle is located at the minimum
point x= i of the external potential. If the thermal noise is
sufficiently weak, the particles are confined around the po-
tential minima. If the noise strength becomes larger, the par-
ticles overcome the potential peaks and exhibit a random
walk, although there is no definite phase transition in this
one-dimensional system.

We have performed numerical simulations at �=0.01 and
F0=0.8. The initial positions are xi�0�= i. Figure 1�b� dis-
plays time evolutions of x̃i�t� for i=1, 3, 5, and 7 for T
=0.18, N=8, and �=1 /21/6. Here, x̃i�t� is the position of the
ith particle neglecting the resetting process xi�t�→xi�t�	N
at the two boundaries x=0 and x=N. Each particle is fluctu-
ating near the potential minima x= i for most of the time, but
occasionally jumps to the neighboring potential minimum
i	1. All particles jump almost simultaneously as shown in
Fig. 1�b�. Figure 1�c� shows time evolutions of x̃5�t�, x̃2�t�
− x̃1�t�, and 
x=� j=1

N �x̃j+1− x̃j −1�2. The difference x2−x1
changes in time randomly. That is, individual motions are not
synchronized, although the jump motions are well synchro-
nized. The total fluctuation expressed by 
x tends to increase
when the jump motions occur.
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FIG. 1. �a� Schematic figure of mutually interacting particles in
a spatially periodic potential. �b� Time evolution of x̃i�t� for i=1, 3,
5, and 7. Cooperative jump motions are clearly observed. �c� Time
evolutions of x̃5�t�, x̃2�t�− x̃1�t� �shifted by 2 for the sake of visibil-
ity�, and 
x=� j=1

N �x̃ j+1− x̃ j −1�2 for 600� t�1000.
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Each particle exhibits a random motion around potential
minima almost independently. One particle might try to jump
to the neighboring potential valley by the random motion,
but there is another particle around the neighboring potential
minimum, and two particles are hardly confined in the same
potential valley, because of the strong repulsive interaction.
As a result, the jump motions are permitted, only when all
particles jump almost simultaneously to the right or to the
left. Therefore, the probability of the simultaneous jump mo-
tion becomes rapidly smaller, as the total number N is in-
creased for a fixed value of T.

The jump probability can be evaluated with the diffusion
constant. The diffusion constant is numerically calculated
with D= ��x̃i�t��− x̃i�t��2� / �2�t�− t�� for a sufficiently large in-
terval t�− t. The larger T is necessary for the particles to
overcome the potential peaks, when the particle number N is
increased. The diffusion constant decreases rapidly with N.
We show the diffusion constant D as a function of T /N in
Fig. 2�a� at N=1, 2, 4, and 8 for xc=1. In our numerical
simulation, �¯ � was calculated as a simple average of
80 000 samples and t�− t was set to be 1000 to evaluate D.
The diffusion constant D is roughly approximated as a func-
tion of T /N. For N=1, the diffusion constant is exactly ex-
pressed as

D�T� = T�exp�U0/T��−1�exp�− U0/T��−1, �2�

where �exp�	U0 /T��=�0
1exp�	U0�x� /T�dx �8–10�. The nu-

merical results for N=1 are well approximated at the theo-
retical curve. If the motions are assumed to be sufficiently
synchronized, the center of mass X= �1 /N��i=1

N x̃i obeys

dX

dt
= − F0 sin�2�X� + ��t� , �3�

where ��t�= �1 /N��i=1
N �i�t� by the summation of Eq. �1� for

each i. The time correlation of ��t� satisfies ���t���t���
= �1 /N2�� j=1

n 2T��t− t��= �2T /N���t− t��. The diffusion con-
stant D of X�t� is evaluated as D�T /N�, using D�T� in Eq.
�2�. This is a reason why D is roughly approximated at
D�T /N� as shown in Fig. 2�a�. However, the numerical val-
ues in Fig. 2�a� are slightly larger than D�T /N� and the dif-
ference between the numerical results and the theoretical
dashed curve increases with N. Figure 2�b� shows the diffu-

sion constant as a function of T /N for three parameter values
of xc: xc=1, 1.2, and 1.4. The particle number is fixed to be
N=4. As xc is increased, the diffusion constants approach the
theoretical curve of D�T /N�. This is because more synchro-
nous jump motion occurs as the jamming becomes stronger.
Small deviation �x̃i= x̃i− 	X�t�+ i− �N+1� /2
 from the com-
pletely synchronous motion x̃i�t�=X�t�+ i− �N+1� /2 obeys

d�xi

dt
= − 2�F0 cos�2�X�t���xi − F��1���xi−1 − 2�xi + �xi+1�

+ �i�t� − ��t� , �4�

where F��1�=−d2U /dx2=��42�6−156�12�=��21xc
6−39xc

12�
are evaluated as −0.18, −2.85, and −20.53, respectively, for
xc=1,1.2 and 1.4. As xc increases, the difference �xi−�xi−1
becomes smaller, and more synchronous motion occurs, be-
cause the interaction term expressed by −F��1���xi−1−2�xi
+�xi+1� works as more attractive force. As N increases, the
difference �xN/2+1−�x1 becomes larger and the synchronous
motion becomes weaker owing to the fluctuations of long
wavelength.

The diffusion constant can be better evaluated by incor-
porating the deviation from the synchronous motion. We as-
sume the deviation �xi takes a form �xi=c cos�2�i /N�. Here,
c is a variational parameter which represents the amplitude
of the sinusoidal deformation. The total energy of the con-
figuration x̃i= i+X�t�− �N+1� /2+c cos�2�i /N� is evaluated
at

Ut�c,X� = �
i=1

N

	U0�xi� + U�xi+1 − xi�
 . �5�

We have calculated the minimum value of Ut by changing c
for a fixed value of X. Figures 3�a� and 3�b� display the
minimum value of Ut and the parameter value of c corre-
sponding to the minimum of Ut for N=8 and xc=1. The
synchronous state c=0 or �xi=0 is unstable near X=1 /2,
because of the first term −2�F0 cos�2�X��xi in Eq. �4�. Too
large deviation is unfavorable owing to the repulsive
Lennard-Jones potential. As a result, a nonzero value of c
appears for 0.264�X�0.736, and the peak amplitude of Ut
becomes smaller than NU0�1 /2�. That is, the deviation from
the completely synchronized motion decreases effectively
the peak potential energy, and the diffusion becomes easier.
We found that the total fluctuation 
x=� j=1

N �x̃j+1�t�− x̃j�t��2

tends to increase rapidly when the jump motions occur as
shown in Fig. 1�c�. This observation is closely related to the
above argument that the deviation from the completely syn-
chronized motion becomes large when the particles over-
come the potential peak at X=1 /2. We have evaluated the
diffusion constant as D��T /N� using the modified potential
Ut as

D��T� = T�exp	Ut/�NT�
�−1�exp	− Ut/�NT�
�−1. �6�

Here, we have assumed that the energy Ut /N is an effective
periodic potential for the motion of X. Figure 3�c� displays
the diffusion constant evaluated by Eq. �6� with the dashed
line. The dotted line is the one by Eq. �2�. The numerical
results are denoted by the mark �. The diffusion constant by
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FIG. 2. �a� Diffusion constant D as a function of T /N for N
=1 ���, 2 ���, 4 �+�, and 8 ���. The parameter value of xc is 1.
The dotted curve denotes Eq. �2�. �b� Diffusion constant D as a
function of T /N for N=4. The parameters xc are changed as xc=1
���, 1.2 �+�, and 1.4 ���. The dotted curve denotes Eq. �2�.
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Eq. �6� is a better approximation. The diffusion constant be-
comes larger. However, there is still a difference between the
theoretical estimate and the numerical results.

When the total number N is much larger, the completely
cooperative motion does not occur, but, the jump motion is
locally synchronized. We show some numerical results for
N=100. Figure 4�a� displays x̃1�t�+1, x̃2�t�+3, x̃51�t�−42,
and x̃52�t�−40 for N=100, �=0.01, xc=1, F0=0.8, and T
=0.4. The motions of x̃1 and x̃2 and the motions of x̃51 and
x̃52 are sufficiently synchronized if large fluctuations are
seen, but the motions of the two pairs are not synchronized.
To characterize the jump motion, we have defined a quantity:
q�i , t�= x̃i�t+
t�− x̃i�t�. If q�i , t� is O�1�, a jump motion oc-
curs for the ith particle during the interval between t and t
+
t. Figure 4�b� shows a spatiotemporal plot of the jump
events, where the spatiotemporal points satisfying q�i , t�
�0.8 are plotted with dots for 
t=5. The jump motions
occur cooperatively at sites in a horizontal line segment. This
figure shows the dynamical heterogeneity in this system. The
size of the cooperative jump motion or the number of par-
ticles which exhibit cooperative jump motions is evaluated
with the length L of the line segment satisfying q�i , t��0.8
for fixed values of t. Figure 4�c� shows a semilogarithmic
plot of the size distribution P�L� for N=100 and T=0.4. The
size distribution is approximately expressed with an expo-
nential function. The jump probability is proportional to the
diffusion constant, and the diffusion constant has been
roughly evaluated as D�T /N�=T /N�exp	NU0 /T
�−1

��exp	−NU0 /T
�−1 for a system including N particles. Then,
the cooperative jump probability including L particles is ex-
pected to be proportional to D�T /L� as a rough estimate. The
dashed curve in Fig. 4�c� is

P�L� =
�T/L��exp�LU0/T��−1�exp�− LU0/T��−1

�
L

�T/L��exp�LU0/T��−1�exp�− LU0/T��−1
�7�

for T=0.4 and U0�x�=−F0 / �2��cos�2�x�. P�L� decays ex-
ponentially, but the decay rate is larger than the numerical
one. As a better approximation, we take the effective de-
crease in the peak amplitude of the periodic potential by the
deviation from the completely synchronized motion into con-
sideration. The effective periodic potential is assumed to be
U0 with �1 as a simple ansatz. Then, the size distribution
is expressed as

P�L� =
�T/L��exp�LU0/T��−1�exp�− LU0/T��−1

�
L

�T/L��exp�LU0/T��−1�exp�− LU0/T��−1
.

�8�

The solid curve in Fig. 4�c� denotes P�L� calculated by Eq.
�8� with =0.725 for T=0.4. The solid curve is a good ap-
proximation, although the value of  is chosen as a fitting
parameter. Donati et al. found cooperative stringlike motions
in the numerical simulations of supercooled liquids. They
showed that the probability distribution of the string length
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FIG. 3. �a� The minimum value of Ut�c ,X� as a function of X for F0=0.8, xc=1, �=0.01, and N=8. �b� Parameter c for the minimum
value of Ut�c ,X� as a function of X for F0=0.8, xc=1, �=0.01, and N=8. �c� Diffusion constant D obtained by numerical simulation �+�,
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FIG. 4. �a� Time evolutions of x̃i for i=1, 2, 51, and 52 in a system of xc=1, F0=0.8 and N=100. �b� Spatiotemporal plot of the
cooperative jump motions. �c� Numerically obtained probability distribution P�L� �rhombi� of the size L of the cooperative jump motions. An
approximate probability distribution using Eq. �7� is denoted by a dashed curve and its modification using Eq. �8� with =0.725 is denoted
by a solid curve.
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obeys an exponential law �6�. We think that our numerical
result is closely related to their results.

To summarize, we have proposed a very simple one-
dimensional system that exhibits cooperative jump motions.
We have found that the diffusion constant is roughly ex-
pressed as D�T /N� where N is the particle number. However,
D is slightly larger than the simplest one-particle approxima-

tion. We have tried a better approximation, taking the devia-
tion from the completely synchronous motion into account.
Finally, we have found that the probability distribution of the
size of the cooperative jump motions obeys an exponential
function of L. Our model is very simple, however, the theo-
retical analyses are still not satisfactory, which are left to
future study.
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